Convex lens-induced nanoscale templating.

نویسندگان

  • Daniel J Berard
  • François Michaud
  • Sara Mahshid
  • Mohammed Jalal Ahamed
  • Christopher M J McFaul
  • Jason S Leith
  • Pierre Bérubé
  • Rob Sladek
  • Walter Reisner
  • Sabrina R Leslie
چکیده

We demonstrate a new platform, convex lens-induced nanoscale templating (CLINT), for dynamic manipulation and trapping of single DNA molecules. In the CLINT technique, the curved surface of a convex lens is used to deform a flexible coverslip above a substrate containing embedded nanotopography, creating a nanoscale gap that can be adjusted during an experiment to confine molecules within the embedded nanostructures. Critically, CLINT has the capability of transforming a macroscale flow cell into a nanofluidic device without the need for permanent direct bonding, thus simplifying sample loading, providing greater accessibility of the surface for functionalization, and enabling dynamic manipulation of confinement during device operation. Moreover, as DNA molecules present in the gap are driven into the embedded topography from above, CLINT eliminates the need for the high pressures or electric fields required to load DNA into direct-bonded nanofluidic devices. To demonstrate the versatility of CLINT, we confine DNA to nanogroove and nanopit structures, demonstrating DNA nanochannel-based stretching, denaturation mapping, and partitioning/trapping of single molecules in multiple embedded cavities. In particular, using ionic strengths that are in line with typical biological buffers, we have successfully extended DNA in sub-30-nm nanochannels, achieving high stretching (90%) that is in good agreement with Odijk deflection theory, and we have mapped genomic features using denaturation analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex lens-induced confinement for imaging single molecules.

Fluorescence imaging is used to study the dynamics of a wide variety of single molecules in solution or attached to a surface. Two key challenges in this pursuit are (1) to image immobilized single molecules in the presence of a high level of fluorescent background and (2) to image freely diffusing single molecules for long times. Strategies that perform well by one measure often perform poorly...

متن کامل

Templating hydrogels

Templating processes for creating polymerized hydrogels are reviewed. The use of contact photonic crystals and of non-contact colloidal crystalline arrays as templates are described and applications to chemical sensing and device fabrication are illustrated. Emulsion templating is illustrated in the formation of microporous membranes, and templating on reverse emulsions and double emulsions is ...

متن کامل

Category and subcategories of (L,M)-fuzzy convex spaces

Inthispaper, (L,M)-fuzzy domain finiteness and (L,M)-fuzzy restricted hull spaces are introduced, and several characterizations of the category (L,M)-CS of (L,M)-fuzzy convex spaces are obtained. Then, (L,M)-fuzzy stratified (resp. weakly induced, induced) convex spaces are introduced. It is proved that both categories, the category (L,M)-SCS of (L,M)-fuzzy stratified convex spaces and the cate...

متن کامل

Self-templating 2D supramolecular networks: a new avenue to reach control over a bilayer formation.

One of the greatest challenges in 2D self-assembly at interfaces is the ability to grow spatially controlled supramolecular motifs in the third dimension, exploiting the surface as a template. In this manuscript a concentration-dependent study by scanning tunneling microscopy at the solid-liquid interface, corroborated by Molecular Dynamics (MD) simulations, reveals the controlled generation of...

متن کامل

Controlled nanometric fibers of self-assembled designed protein scaffolds.

The use of biological molecules as platforms for templating and nanofabrication is an emerging field. Here, we use designed protein building blocks based on small repetitive units (consensus tetratricopeptide repeat - CTPR) to generate fibrillar linear nanostructures by controlling the self-assembly properties of the units. We fully characterize the kinetics and thermodynamics of the assembly a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 37  شماره 

صفحات  -

تاریخ انتشار 2014